Electronic structure of graphene beyond the linear dispersion regime
نویسندگان
چکیده
Among the many interesting features displayed by graphene, one of the most attractive is the simplicity with which its electronic structure can be described. The study of its physical properties is significantly simplified by the linear dispersion relation of electrons in a narrow range around the Fermi level. Unfortunately, the mathematical simplicity of graphene electrons is limited only to this narrow energy region and is not very practical when dealing with problems that involve energies outside the linear dispersion part of the spectrum. In this communication we remedy this limitation by deriving a set of closed-form analytical expressions for the real-space single-electron Green function of graphene which is valid across a large fraction of the energy spectrum. By extending to a wider energy range the simplicity with which graphene electrons are described, it is now possible to derive more mathematically transparent and insightful expressions for a number of physical properties that involve higher energy scales. The power of this new formalism is illustrated in the case of the magnetic (RKKY) interaction in graphene.
منابع مشابه
Quantum current modelling on tri-layer graphene nanoribbons in limit degenerate and non-degenerate
Graphene is determined by a wonderful carrier transport property and high sensitivityat the surface of a single molecule, making them great as resources used in Nano electronic use.TGN is modeled in form of three honeycomb lattices with pairs of in-equivalent sites as {A1, B1},{A2, B2}, and {A3, B3} which are located in the top, center and bottom layers, respectively. Trilayer...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملPseudospin and Deformation-Induced Gauge Field in Graphene
The electronic properties of a single layer of graphite, graphene1)–4) have attracted much attention due to the “relativistic” character of π-electrons near the Fermi level. The energy band structure of graphene exhibits a linear energy dispersion relation around the two inequivalent, hexagonal corners of the first Brillouin zone in the k-space (the K and K′ points).5),6) The wavefunction (Hami...
متن کاملElectronic structure of a realistic model of amorphous graphene
In this note, we calculate the electronic properties of a realistic atomistic model of amorphous graphene. The model contains odd-membered rings, particularly five and seven membered rings and no coordination defects. We show that odd-membered rings increase the electronic density of states at the Fermi level relative to crystalline graphene; a honeycomb lattice with semi-metallic character. So...
متن کاملBeyond graphene: stable elemental monolayers of silicene and germanene.
Two-dimensional materials are one of the most active areas of nanomaterials research. Here we report the structural stability, electronic and vibrational properties of different monolayer configurations of the group IV elemental materials silicene and germanene. The structure of the stable configuration is calculated and for planar and low (<1 Å) atomic buckling configurations, analysis of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011